Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Med Virol ; 95(5): e28758, 2023 05.
Article in English | MEDLINE | ID: covidwho-2327008

ABSTRACT

To compare the reactogenicity and immunogenicity between the two-dose mRNA COVID-19 vaccine regimen and one or two doses of inactivated vaccine followed by an mRNA vaccine regimen in healthy children between 5 and 11 years of age, a prospective cohort study was performed at King Chulalongkorn Memorial Hospital in Thailand between March to June 2022. Healthy children between 5 and 11 years of age were enrolled and received the two-dose mRNA COVID-19 vaccine (BNT162b2) regimen or the inactivated (CoronaVac) vaccine followed by the BNT162b2 vaccine regimen. In addition, healthy children who received two doses of BBIBP-CorV between 1 and 3 months prior were enrolled to receive a heterologous BNT162b2 as a third dose (booster). Reactogenicity was assessed by a self-reported online questionnaire. Immunogenicity analysis was performed to determine binding antibodies to wild-type SARS-CoV-2. Neutralizing antibodies to Omicron variants (BA.2 and BA.5) were tested using the focus reduction neutralization test. Overall, 166 eligible children were enrolled. Local and systemic adverse events which occurred within 7 days after vaccination were mild to moderate and well-tolerated. The two-dose BNT162b2, CoronaVac followed by BNT162b2, and two-dose BBIBP-CorV followed by BNT162b2 groups elicited similar levels of anti-receptor-binding domain (RBD) IgG. However, the two-dose BNT162b2 and two-dose BBIBP-CorV followed by BNT162b2 groups elicited higher neutralizing activities against the Omicron BA.2 and BA.5 variant than the CoronaVac followed by BNT162b2 group. The CoronaVac followed by BNT162b2 group elicited low neutralizing activities against the Omicron BA.2 and BA.5 variant. A third dose (booster) mRNA vaccine should be prioritized for this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Child, Preschool , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunogenicity, Vaccine , Prospective Studies , RNA, Messenger , SARS-CoV-2
2.
PLoS One ; 18(4): e0279147, 2023.
Article in English | MEDLINE | ID: covidwho-2304396

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic in young children. Therefore, the true rate of infection is likely underestimated. Few data are available on the rate of infections in young children, and studies on SARS-CoV-2 seroprevalence among children during the omicron wave are limited. We assessed the SARS-CoV-2 infection-induced seroprevalence among children and estimated the associated risk factors for seropositivity. METHODS: A longitudinal serological survey was conducted from January 2021 through December 2022. The inclusion criteria were healthy children between 5 and 7 years old and their parents or legal guardians provided written informed consent. Samples were tested for anti-nucleocapsid (N) IgG and anti-receptor binding domain (RBD) IgG using a chemiluminescent microparticle immunoassay (CMIA), and total anti-RBD immunoglobulin (Ig) was detected using an electrochemiluminescence immunoassay (ECLIA). The vaccination and SARS-CoV-2 infection history were collected. RESULTS: In all, 457 serum samples were obtained from 241 annually followed-up children in this longitudinal serological survey. Of these, 201 participants provided samples at two serial time points-during the pre-omicron and omicron-dominant wave. Overall, seroprevalence induced by SARS-CoV-2 infection increased from 9.1% (22/241) during the pre-omicron to 48.8% (98/201) during the omicron wave. Amongst seropositive individuals, the infection-induced seropositivity was lower in vaccinated participants with two doses of BNT162b2 than in the unvaccinated participants (26.4% vs. 56%; OR, 0.28; 95%CI: 0.14-0.58). Nevertheless, the ratio of seropositive cases per recalled infection was 1.63 during the omicron dominant wave. The overall seroprevalence induced by infection, vaccination, and hybrid immunity was 77.1% (155/201) between January and December 2022. CONCLUSIONS: We report an increase in infection-induced seroprevalence among children during the omicron wave. These findings highlight that a seroprevalence survey can help determine the true rate of infection, particularly in asymptomatic infection, and optimize public health policies and vaccine strategies in the pediatric population.


Subject(s)
COVID-19 , Child , Humans , Child, Preschool , COVID-19/epidemiology , SARS-CoV-2 , Longitudinal Studies , Thailand/epidemiology , BNT162 Vaccine , Seroepidemiologic Studies , Immunoglobulin G , Antibodies, Viral
3.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2265451

ABSTRACT

The aim of this study is to investigate the reactogenicity and immunogenicity of the fourth dose using monovalent mRNA vaccines after different three-dose regimens and to compare the 30 µg BNT162b2 and 50 µg mRNA-1273 vaccines. This prospective cohort study was conducted between June and October 2022. The self-recorded reactogenicity was evaluated on the subsequent 7 days after a fourth dose. The binding and neutralizing activity of antibodies against the Omicron BA.4/5 variants were determined. Overall, 292 healthy adults were enrolled and received BNT162b2 or mRNA-1273. Reactogenicity was mild to moderate and well tolerated after a few days. Sixty-five individuals were excluded. Thus, 227 eligible individuals received a fourth booster dose of BNT162b2 (n = 109) and mRNA-1273 (n = 118). Most participants, regardless of the type of previous three-dose regimens, elicited a significantly high level of binding antibodies and neutralizing activity against Omicron BA.4/5 28 days after a fourth dose. The neutralizing activity against Omicron BA.4/5 between the BNT162b2 (82.8%) and mRNA-1273 (84.2%) groups was comparable with a median ratio of 1.02. This study found that the BNT162b2 and mRNA-1273 vaccines can be used as a fourth booster dose for individuals who were previously immunized with any prior three-dose mix-and-match COVID-19 vaccine regimens.

4.
Int J Infect Dis ; 126: 64-72, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2241988

ABSTRACT

OBJECTIVES: To report the safety and immunogenicity profile of a protein subunit vaccine (CovovaxTM) given as a third (booster) dose to individuals primed with different primary vaccine regimens. METHODS: A third dose was administered to individuals with an interval range of 3-10 months after the second dose. The four groups were classified according to their primary vaccine regimens, including two-dose BBIBP-CorV, AZD1222, BNT162b2, and CoronaVac/AZD1222. Immunogenicity analysis was performed to determine binding antibodies, neutralizing activity, and the T-cell responses. RESULTS: Overall, 210 individuals were enrolled and boosted with the CovovaxTM vaccine. The reactogenicity was mild to moderate. Most participants elicited a high level of binding and neutralizing antibody against Wild-type and Omicron variants after the booster dose. In participants who were antinucleocapsid immunoglobulin G-negative from all groups, a booster dose could elicit neutralizing activity to Wild-type and Omicron variants by more than 95% and 70% inhibition at 28 days, respectively. The CovovaxTM vaccine could elicit a cell-mediated immune response. CONCLUSION: The protein subunit vaccine (CovovaxTM) can be proposed as a booster dose after two different priming dose regimens. It has strong immunogenicity and good safety profiles.

5.
Arch Virol ; 168(1): 26, 2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2174217

ABSTRACT

The global COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in China in December 2019. To date, there have been approximately 3.4 million reported cases of COVID-19 and over 24,000 deaths in Thailand. In this study, we investigated the molecular characteristics and evolution of SARS-CoV-2 in Thailand from 2020 to 2022. Two hundred sixty-eight SARS-CoV-2 isolates, collected mostly in Bangkok from COVID-19 patients, were characterised by partial genome sequencing. Moreover, the viruses in 5,627 positive SARS-CoV-2 samples were identified as viral variants - B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529 (Omicron/BA.1), or B.1.1.529 (Omicron/BA.2) - by multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) assays. The results revealed that B.1.36.16 caused the predominant outbreak in the second wave (December 2020-January 2021), B.1.1.7 (Alpha) in the third wave (April-June 2021), B.1.617.2 (Delta) in the fourth wave (July-December 2021), and B.1.1.529 (Omicron) in the fifth wave (January-March 2022). The evolutionary rate of the viral genome was 2.60 × 10-3 (95% highest posterior density [HPD], 1.72 × 10-3 to 3.62 × 10-3) nucleotide substitutions per site per year. Continued molecular surveillance of SARS-CoV-2 is crucial for monitoring emerging variants with the potential to cause new COVID-19 outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Thailand/epidemiology , Pandemics
6.
Int J Infect Dis ; 122: 793-801, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2015439

ABSTRACT

OBJECTIVES: The SARS-CoV-2 Omicron variant presents numerous mutations potentially able to evade neutralizing antibodies (NAbs) elicited by COVID-19 vaccines. Therefore, this study aimed to provide evidence on a heterologous booster strategy to overcome the waning immunity against Omicron variants. METHODS: Participants who completed the Oxford/AstraZeneca (hereafter AZD1222) vaccine dose for 5-7 months were enrolled. The reactogenicity and persistence of immunogenicity in both humoral and cellular response after a homologous or heterologous booster with the AZD1222 and messenger RNA (mRNA) vaccines (BNT162b2, full, or half-dose mRNA-1273) administered 6 months after primary vaccination were determined. RESULTS: A total of 229 individuals enrolled, and waning of immunity was observed 5-7 months after the AZD1222-primed vaccinations. Total receptor-binding domain (RBD) immunoglobulin (Ig) levels, anti-RBD IgG, and focus reduction neutralization test against Omicron BA.1 and BA.2 variants and T cell response peaked at 14-28 days after booster vaccination. Both the full and half dose of mRNA-1273 induced the highest response, followed by BNT162b2 and AZD1222. At 90 days, the persistence of immunogenicity was observed among all mRNA-boosted individuals. Adverse events were acceptable for all vaccines. CONCLUSION: A heterologous mRNA booster provided a significantly superior boost of binding and NAbs levels against the Omicron variant compared with a homologous booster in individuals with AZD1222-primed vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunization, Secondary/adverse effects , RNA, Messenger , SARS-CoV-2/genetics , Vaccination
7.
Vaccine ; 40(39): 5657-5663, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1996611

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been a serious healthcare problem worldwide since December 2019. The third dose of heterologous vaccine was recently approved by World Health Organization. The present study compared the reactogenicity and immunogenicity of the reduced and standard third booster dose of the BNT162b2 and mRNA-1273 vaccine in adults who previously received the two-dose CoronaVac vaccine. Results showed that headache, joint pain, and diarrhea were more frequent in the 15 µg- than the 30 µg-BNT162b2 groups, whereas joint pain and chilling were more frequent in the 100 µg- than the 50 µg-mRNA-1273 groups. No significant differences in immunogenicity were detected. These findings demonstrate that the reduced dose of the mRNA vaccines elicited antibody responses against the SARS-CoV-2 delta and omicron variants that were comparable to the standard dose. The reduced dose could be used to increase vaccine coverage in situations of limited global vaccine supply.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral , Arthralgia , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization, Secondary , Immunogenicity, Vaccine , RNA, Messenger , SARS-CoV-2 , Vaccines, Inactivated/adverse effects
9.
J Med Virol ; 94(12): 5713-5722, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1971294

ABSTRACT

The coronavirus 2019 omicron variant has surged rapidly and raises concerns about immune evasion even in individuals with complete vaccination, because it harbors mutations. Here we examine the capability of booster vaccination following CoronaVac/AZD1222 prime to induce neutralizing antibodies (NAbs) against omicron (BA.1 and BA.2) and T-cell responses. A total of 167 participants primed with heterologous CoronaVac/AZD1222 for 4-5 months were enrolled, to receive AZD1222, BNT162b2, or mRNA-1273 as a third dose. Reactogenicity was recorded. Immunogenicity analyses of severe acute respiratory syndrome coronavirus 2-binding antibodies were measured using enzyme-linked immunosorbent assay. The NAb titers against omicron BA.1 and BA.2 were determined using the focus reduction neutralization test (FRNT50) and total interferon-γ responses were measured to observe the T-cell activation. A substantial loss in neutralizing potency to omicron variant was found at 4-5 months after receiving the heterologous CoronaVac/AZD1222. Following booster vaccination, a significant increase in binding antibodies and neutralizing activities toward delta and omicron variants was observed. Neutralization to omicron BA.1 and BA.2 were comparable, showing the highest titers after boosted mRNA-1273 followed by BNT162b2 and AZD1222. In addition, individuals boosted with messenger RNA (mRNA) vaccines develop a T-cell response to spike protein, whereas those boosted with AZD1222 did not. Reactogenicity was mild to moderate without serious adverse events. Our findings demonstrated that mRNA booster vaccination is able to overcome waning immunity to provide antibodies that neutralize omicron BA.1 and BA.2, as well as a T-cell response.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunity , Interferon-gamma , RNA, Messenger/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
10.
Diagnostics (Basel) ; 12(8)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957248

ABSTRACT

This study examined the neutralizing activity and receptor-binding domain (RBD) antibody levels against wild-type and omicron BA.1 and BA.2 variants in individuals who received three doses of COVID-19 vaccination. The relationship between the anti-RBD IgG against wild-type and live virus neutralizing antibody titers against omicron BA.1 and BA.2 variants was examined. In total, 310 sera samples from individuals after booster vaccination (third-dose) were tested for specific IgG wild-type SARS-CoV-2 RBD and the omicron BA.1 surrogate virus neutralization test (sVNT). The live virus neutralization assay against omicron BA.1 and BA.2 was performed using the foci-reduction neutralization test (FRNT50). The anti-RBD IgG strongly correlated with FRNT50 titers against BA.1 and BA.2. Non-linear regression showed that anti-RBD IgG at the cut-off value ≥148 BAU/mL and ≥138 BAU/mL were related to the threshold for FRNT50 titers ≥20 against BA.1 and BA.2, respectively. A moderate correlation was observed between the sVNT and FRNT50 titers. At FRNT50 titers ≥20, the predicted sVNT for BA.1 and BA.2 was ≥10.57% and ≥11.52%, respectively. The study identified anti-RBD IgG and sVNT levels that predict detectable neutralizing antibodies against omicron variants. Assessment and monitoring of protective immunity support vaccine policies and will help identify optimal timing for booster vaccination.

11.
Vaccines (Basel) ; 10(7)2022 Jul 03.
Article in English | MEDLINE | ID: covidwho-1917879

ABSTRACT

Coronavirus disease 2019 (COVID-19) booster vaccination is being comprehensively evaluated globally due to waning immunity and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Therefore, this study aimed to evaluate antibody responses in individuals vaccinated with two doses of the BBIBP-CorV vaccine and to explore the boosting effect of the different vaccine platforms in BBIBP-CorV-primed healthy adults, including a viral vector vaccine (AZD122) and mRNA vaccines (BNT162b2 and mRNA-1273). The results showed that in the BBIBP-CorV prime group, the total receptor-binding domain (RBD) immunoglobulin (Ig) and anti-RBD IgG levels waned significantly at three months after receiving the second dose. However, after the booster, RBD-specific binding antibody levels increased. Neutralizing antibody measured by a surrogate neutralization test showed inhibition over 90% against the SARS-CoV-2 delta variant but less than 70% against the omicron variant after the third dose on day 28. All booster vaccines could induce the total IFN-É£ T-cell response. The reactogenicity was acceptable and well-tolerated without serious adverse events. This study supports the administration of the third dose with either a viral vector or mRNA vaccine for BBIBP-CorV-primed individuals to stimulate antibody and T-cell responses.

12.
PLoS One ; 17(4): e0267102, 2022.
Article in English | MEDLINE | ID: covidwho-1883688

ABSTRACT

Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule, especially in resource-limited settings. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 over time in a cohort of patients who were previously infected with the wild-type SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of wild-type SARS-CoV-2 infection were enrolled in our immunological study. Blood samples were collected at 3-, 6-, 9-, and 12-months post symptom onset or detection of SARS-CoV-2 by RT-PCR (in asymptomatic individuals). The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. We observed a high level of correlation between neutralizing and SARS-CoV-2 spike protein-specific antibody titers. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5-327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time in both participants with severe disease and mild disease were depended on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G , Spike Glycoprotein, Coronavirus
13.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786528

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a severe and frequently lethal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that surfaced in Thailand in early 2020. As of this writing, there have been 3,303,169 reported cases and 24,075 deaths in Thailand. This study investigated molecular characterisation and the evolution of the SARS-CoV-2 identified during 2020–2022 in Thailand. Two hundred and sixty-eight SARS-CoV-2 strains, collected mostly in Bangkok during 2020–2022 from COVID-19 patients, were characterised by partial genome sequencing. Moreover, 5,627 positive SARS-CoV-2 samples were identified as variants of the virus (GRY/Alpha, GK/delta, GRA/Omicron BA.1 and GRA/Omicron BA.2) by multiplex real-time reverse transcription-polymerase chain reaction (RT-PCR) assays. The results revealed that clade GH caused the predominant outbreak in the second wave (December 2020–January 2021), clade GRY/Alpha in the third wave (April–June 2021), clade GK/delta in the fourth wave (July–December 2021), and clade GRA/Omicron in the fifth wave (January–March 2022). The evolutionary rate in the outbreak was 2.60×10 − 3 (95% highest posterior density [HPD], 1.72×10 − 3 to 3.62×10 − 3 ) nucleotide substitutions per site per year. Continued molecular surveillance of SARS-CoV-2 is crucial for monitoring emerging variants to prevent possible new COVID-19 outbreaks.

14.
Sci Rep ; 11(1): 23216, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545650

ABSTRACT

This study monitored the long-term immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in patients who had recovered from coronavirus disease (COVID)-19. Anti-nucleocapsid immunoglobulin G (anti-N IgG) titer in serum samples collected at a single (N = 302) or multiple time points (N = 229) 3-12 months after COVID-19 symptom onset or SARS-CoV-2 detection in respiratory specimens was measured by semiquantitative chemiluminescent microparticle immunoassay. The 531 patients (966 specimens) were classified according to the presence or absence of pneumonia symptoms. Anti N IgG was detected in 87.5% of patients (328/375) at 3 months, 38.6% (93/241) at 6 months, 23.7% (49/207) at 9 months, and 26.6% (38/143) at 12 months. The anti-N IgG seropositivity rate was significantly lower at 6, 9, and 12 months than at 3 months (P < 0.01) and was higher in the pneumonia group than in the non-pneumonia/asymptomatic group at 6 months (P < 0.01), 9 months (P = 0.04), and 12 months (P = 0.04). The rate started to decline 6-12 months after symptom onset. Anti-N IgG sample/cutoff index was positively correlated with age (r = 0.192, P < 0.01) but negatively correlated with interval between symptom onset and blood sampling (r = - 0.567, P < 0.01). These findings can guide vaccine strategies in recovered COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/immunology , Pneumonia/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , COVID-19/complications , COVID-19/therapy , COVID-19/virology , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , Pneumonia/epidemiology , Pneumonia/virology , Retrospective Studies , Thailand/epidemiology , Young Adult
15.
Virol J ; 18(1): 52, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1127715

ABSTRACT

BACKGROUND: Efficient monitoring and control of coronavirus disease 2019 (COVID-19) require access to diagnostic tests, and serological diagnostic testing is desirable. In the current study, antibodies were investigated in patients recently diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Cross-sectional data were obtained from 245 patients in whom SARS-CoV-2 infection had been confirmed via real-time reverse transcriptase-polymerase chain reaction between March and October 2020. Serum samples were acquired between 2 and 60 days following the onset of COVID-19 symptoms or the first detection of SARS-CoV-2 in asymptomatic patients. All specimens were tested simultaneously using an IgM/IgG rapid diagnostic test (RDT), IgG nucleocapsid protein-based chemiluminescent microparticle immunoassay (CMIA), IgG, and IgA spike protein-based enzyme-linked immunosorbent assays (ELISAs). Blood donor samples obtained in 2018 were used as negative controls. RESULTS: The sensitivity and specificity of the RDT IgG were compared with the IgG immunoassays as standards. The RDT IgG exhibited 97.5% sensitivity and 89.4% specificity compared with a CMIA IgG, 98.4% sensitivity, and 78.8% specificity compared with an ELISA IgG. IgM, IgG, and IgA seropositivity rates were low between 1 and 2 weeks after COVID-19 symptom onset or the detection of SARS-CoV-2 RNA. IgM seropositivity rate began decreasing after 4 weeks, whereas IgG and IgA seropositivity rate remained at appreciable levels over the 8-week study period. No cross-reactivity with seasonal coronaviruses was detected. CONCLUSIONS: IgG RDT alone or combined with molecular diagnostic tests may be useful for identifying recent SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Cross-Sectional Studies , Humans , Immunoassay , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology
16.
Exp Biol Med (Maywood) ; 246(4): 400-405, 2021 02.
Article in English | MEDLINE | ID: covidwho-913987

ABSTRACT

Due to the common symptoms of COVID-19, patients are similar to influenza-like illness. Therefore, the detection method would be crucial to discriminate between SARS-CoV-2 and influenza virus-infected patients. In this study, CRISPR-Cas12a-based detection was applied for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus which would be a practical and attractive application for screening of patients with COVID-19 and influenza in areas with limited resources. The limit of detection for SARS-CoV-2, influenza A, and influenza B detection was 10, 103, and 103 copies/reaction, respectively. Moreover, the assays yielded no cross-reactivity against other respiratory viruses. The results revealed that the detection of influenza virus and SARS-CoV-2 by using RT-RPA and CRISPR-Cas12a technology reaches 96.23% sensitivity and 100% specificity for SARS-CoV-2 detection. The sensitivity for influenza virus A and B detections was 85.07% and 94.87%, respectively. In addition, the specificity for influenza virus A and B detections was approximately 96%. In conclusion, the RT-RPA with CRISPR-Cas12a assay was an effective method for the screening of influenza viruses and SARS-CoV-2 which could be applied to detect other infectious diseases in the future.


Subject(s)
COVID-19/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Limit of Detection , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
17.
PLoS One ; 15(10): e0236905, 2020.
Article in English | MEDLINE | ID: covidwho-895056

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although Thailand has been fairly effective at controlling the spread of COVID-19, continued disease surveillance and information on antibody response in recovered patients and their close contacts remain necessary in the absence of approved vaccines and antivirals. Here, we examined 217 recovered COVID-19 patients to assess their viral RNA shedding and residual antibodies against SARS-CoV-2. We also evaluated antibodies in blood samples from 308 close contacts of recovered COVID-19 patients. We found that viral RNA remained detectable in 6.6% of recovered COVID-19 cases and up to 105 days. IgM, IgG, and IgA antibodies against SARS-CoV-2 were detected in 13.8%, 88.5%, and 83.4% of the recovered cases 4-12 weeks after disease onset, respectively. Higher levels of antibodies detected were associated with severe illness patients experienced while hospitalized. Fifteen of the 308 contacts (4.9%) of COVID-19 cases tested positive for IgG antibodies, suggesting probable exposure. Viral clearance and the pattern of antibody responses in infected individuals are both crucial for effectively combating SARS-CoV-2. Our study provides additional information on the natural history of this newly emerging disease related to both natural host defenses and antibody duration.


Subject(s)
Antibodies, Viral/isolation & purification , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , RNA, Viral/isolation & purification , Survivors , Virus Shedding , Adult , Betacoronavirus , COVID-19 , Enzyme-Linked Immunosorbent Assay , Family Characteristics , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Thailand
18.
Sci Rep ; 10(1): 16602, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834908

ABSTRACT

The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global concern. Several SARS-CoV-2 gene mutations have been reported. In the current study associations between SARS-CoV-2 gene variation and exposure history during the first wave of the outbreak in Thailand between January and May 2020 were investigated. Forty samples were collected at different time points during the outbreak, and parts of the SARS-CoV-2 genome sequence were used to assess genomic variation patterns. The phylogenetics of the 40 samples were clustered into L, GH, GR, O and T types. T types were predominant in Bangkok during the first local outbreak centered at a boxing stadium and entertainment venues in March 2020. Imported cases were infected with various types, including L, GH, GR and O. In southern Thailand introductions of different genotypes were identified at different times. No clinical parameters were significantly associated with differences in genotype. The results indicated local transmission (type T, Spike protein (A829T)) and imported cases (types L, GH, GR and O) during the first wave in Thailand. Genetic and epidemiological data may contribute to national policy formulation, transmission tracking and the implementation of measures to control viral spread.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Base Sequence , COVID-19 , Coronavirus Infections/virology , Genotype , Humans , Molecular Epidemiology , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , SARS-CoV-2 , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL